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INDEX THEORY WITH BOUNDED GEOMETRY,
THE UNIFORMLY FINITE Â CLASS, AND INFINITE

CONNECTED SUMS

KEVIN WHYTE

Abstract
We prove a vanishing theorem in uniformly finite homology for the Â genus
of a complete spin manifold of bounded geometry and non-negative scalar
curvature. This theorem is then applied to obstruct the existence of such
metrics for some infinite connected sums, giving a converse to a theorem of
Block and Weinberger.

Introduction

A manfold of bounded geometry is a Riemannian manifold with
bounds on its curvature tensor and its derivatives, and on the injec-
tivity radius. The natural equivalence relation is diffeomorphism with
bounded distortion. Unless otherwise stated, all manifolds in the paper
are assumed of this type.

These definitions are designed to reflect the restrictions imposed on
a noncompact manifold which is controlled in some way by a compact
manifold. The most common example of this is a covering of a compact
manifold. Any metric on the base gives a metric of bounded geometry on
the cover, and any two such metrics are bounded distortion equivalent.
Similarly, leaves of foliations of compact manifolds have a canonical
bounded distortion class of metric of bounded geometry.

We try to understand index theory for these manifolds, and in partic-
ular, questions of positive scalar curvature. Generally, the appropriate
notion here is uniformly positive scalar curvature, meaning the scalar
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curvature is bounded away from zero from below. When we say that M
admits a metric of positive scalar curvature, we mean that within the
chosen bounded distortion class of metrics there is a metric of uniformly
positive scalar curvature.

To understand positive scalar curvature we need an appropriate gen-
eralization of the Â class. One interesting feature which emerges is that
this class lives in a non-Hausdorff homology group, and thus standard
C∗ algebra methods do not apply. It turns out that to understand this
class requires rather delicate spectral estimates for Dirac operators on
the boundaries of certain compact submanifolds. The resulting theo-
rems have unexpected applications to compact manifolds.

The motivation for this work comes from some interesting infinite
connected sum examples studied in [5] and [16]. As these examples
provide good motivation for the definition of the Â class we use, and
are interesting on their own, we discuss them in some detail in the first
section. The gap between the obstruction of [16] and the construction
in [6] is a direct consequence of the non-Hausdorff problem mentioned
above. Our theorems solve this problem, and provide a complete picture
of these examples.

We would like to thank Shmuel Weinberger for bringing this problem
to our attention, and for many helpful discussions. We would also like
to thank the referee, without whom this paper would be substantially
less readable.

1. Infinite Connected Sums

Let M be a manifold of bounded geometry and S a discrete subset
of M . Given N , a compact manifold, we form a new manifold, M#SN ,
by connected summing a copy of N at each point of S. For this manifold
to have a well defined bounded distortion class of metrics of bounded
geometry one needs that points of S are uniformly separated, meaning
that for some ε > 0 any two distinct points of S are at least ε apart.
Such a set is called uniformly discrete. One important example of this
construction is for M the universal cover of some X and S an orbit of
π1(X). Then M#SN is just a cover of X#N .

Now suppose M has positive scalar curvature. We wish to under-
stand when M#SN admits a metric of positive scalar curvature. We
restrict our attention to the case of M and N spin, and N simply con-
nected. If we are in the covering space situation, there is a positive
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scalar curvature metric invariant under the covering group if and only
if Â(N) = 0. We are looking to generalize the Â class as an obstruction
to positive scalar curvature, so we will typically assume Â(N) �= 0.

A natural first question is whether it is ever possible, keeping
bounded geometry, to have a metric of positive scalar curvature in the
presence of any such “obstructing” N . Examples showing this is possi-
ble are constructed in [6]. We sketch their construction below as it gives
insight about the kind of obstructions that arise in our main theorem,
Theorem 2.3.

Lemma 1.1 ([6]). Let M be noncompact, spin, and of uniformly
positive scalar curvature, and N be compact, spin, and simply connected.
The manifold M#N admits a metric of uniformly positive scalar cur-
vature.

Proof. Choose a geodesic ray p in M . Let M̂ be the infinite con-
nected sum of M with copies of N at p(2i) and copies of N (N with
opposite orientation) at p(2i + 1), for every i. We view M̂ in two ways.
First, we think of the copies of N as coming in pairs, at p(2i) and
p(2i + 1). Each of these pairs is a copy of N#N . This manifold is null
cobordant, indeed it is the boundary of N × [0, 1]. Further, as N is
simply-connected, the null cobordism can be realized by a sequence of
surgeries of index greater than 1.

The collection of all these surgeries is uniformly locally finite, and
thus can be carried out simultaneously without leaving the bounded
geometry category. Using surgery in positive scalar curvature (see [10]
and [17]), we can also carry out the surgeries keeping positive scalar
curvature. Note that to keep the metric in bounded distortion class of
the connected sum, one changes the metric only in a neighborhood of the
sphere one is surgering. The resulting distortion in that neighborhood
depends on the lower bound for the scalar curvature in M , and thus the
assumption of uniformly positive scalar curvature cannot be weakened
to merely positive scalar curvature.

Now view M̂ similarly, but with the copies of N paired as p(2i− 1)
and p(2i). One can similarly carry out surgeries here, leaving just a
single copy of N at p(0). Thus, since M̂ has positive scalar curvature
so does M#N . q.e.d.

Notice that we did not really need that p was a geodesic, just that the
time it spends in any ball is uniformly bounded in the radius. Thus to
carry out the above construction for M#SN , one needs such tails from
each point of S which spread out in such a way that only a uniformly
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bounded number pass through any ball. The existence of such “tails”
is a homological question.

We say that c, an i-chain in M , is uniformly finite if there is a bound
on the diameter of simplices in the support of c and for every r there is
an upper bound Cr on the sum of the absolute values of the coefficients
of the simplices which intersect any r-ball. We denote these chains by
Cuf

i (M), and the corresponding homologies by Huf
i (M).

Any S as above gives a natural element of Cuf
0 (M), and a collec-

tion of tails gives a null homology of that class. We denote that class
corresponding to S in Huf

0 (M) by [S]. We have sketched the proof of:

Theorem 1.2 ([6]). Let M , N , and S be as above. If [S] = 0 then
M#SN admits a metric of positive scalar curvature.

To get a feel for the nature of the obstruction measured by Huf
0 ,

consider the lattice Z
2 in R

2. For any r, the number of lattice points in
a ball of radius r is about r2, while the perimeter is about r. Thus, as
r increases, the number of tails crossing the boundary in some bounded
region must increase unboundedly. This shows that [Z2] is nonzero.

This is essentially the only obstruction to finding tails.

Theorem 1.3 ([5], [18]). If c ∈ Cuf
0 (M) then [c] = 0 if and only if

there are r and C such that for any R ⊂ M one has:

|Σσ∈Rcσ| ≤ Cvol (∂rR).

Recall that a regular sequence is a sequence Ri of subsets of M for
which for any r,

lim
i→∞

vol (∂rRi)
vol (Ri)

= 0.

M is called amenable if and only if there is a regular sequence in M .

Theorem 1.4 ([6]). The following are equivalent:

1. M is non-amenable.

2. Huf
0 (M) = 0.

3. For all S uniformly discrete, [S] = 0.

This means, in particular, that if, in the context of Theorem 1.2,
M is non-amenable then for any N and S, M#SN admits a metric of
positive scalar curvature. If M is a universal cover of a compact manifold
then amenability is equivalent to amenability of the fundamental group.
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Thus, for example, let X be a surface of higher genus cross S4 connected
sum any N . If Â(N) �= 0 then X does not admit a metric of positive
scalar curvature, but the universal cover does have a metric of uniformly
positive scalar curvature in the bounded distortion class of the periodic
metrics.

Naturally one wants to know whether [S] in Huf
0 really is an obstruc-

tion to a metric of positive scalar curvature. That it is follows from the
theory of the next section.

2. The uniformly finite Â genus

How does one obstruct metrics of positive scalar curvature? In the
compact case one has the Â genus. We want to generalize this to the
bounded geometry setting.

According to Chern-Weil theory (see, for example, [14]), the Â class
can be defined as the cohomology class of a universal polynomial, P , in
the curvature tensor. On a manifold of bounded geometry, this form is
bounded, and thus represents an element of l∞-cohomology.

Lemma 2.1. Let M be a manifold of bounded geometry. The
l∞-cohomology class of the Â class is independent of choice of metric
(within the given bounded distortion class).

Proof. Let {gt} be a one parameter family of metrics on M for
which the induced metric gt + dt2 on M × [0, 1] has bounded curvature.
Let ω be the characteristic form, given by P , on M × [0, 1]. Write
ω = αt +βt∧dt, where αt and βt are forms on M . By the assumption of
bounded curvature, these forms are bounded. Since ω is closed, d

dtαt =
dβt. Thus α1 − α0 = d(

∫ 1
0 βt), and therefore α0 and α1 define the same

l∞-cohomology class on M . As these are the characteristic forms on M
for g0 and g1, we see that the l∞-cohomology class of the characteristic
form is the same for metrics connected by such one parameter families.

For any two metrics of bounded curvature on M , g0 and g1, which
are bounded distortion equivalent, Lemma 2.6 of [8] shows that the one
parameter family of metric gt = tg1 + (1 − t)g0 has bounded curvature,
provided that the difference of Levi-Civita connections is a bounded op-
erator (note that by the assumption of bounded distortion equivalence,
bounded means the same thing for all the metrics). It is easy to see
that this is the case if the identity map (M, g0) to (M, g1) is not only
bounded distortion, but also has bounded 2-jet.
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Let g0 and g1 be any two bounded distortion equivalent metrics of
bounded geometry on M . By Theorem 2.5 of [8], we may assume that
not only do these metrics have bounded curvature, but that their cur-
vature tensors have bounded covariant derivatives to arbitrary order.
Thus there is some r > 0 so that the exponential maps on the balls of
radius r are bounded distortion diffeomorphisms with bounded deriva-
tives of arbitrary order. The standard proof that C1 diffeomorphic
smooth manifolds are C∞ diffeomorphic by convolution with a smooth-
ing kernel (see, for example, [12], Section 2.2), shows that there is a
map f : (M, g0) → (M, g1) at finite distance from the identity, which
is a bounded distortion diffeomorphism with bounded 2-jet. Since f
induces the identity on top dimensional l∞ cohomology, this shows that
there is a well defined l∞Â genus for every bounded distortion diffeo-
morphism class of bounded geometry metrics on M . q.e.d.

This is related to the discussion in the previous section as l∞-
cohomology is naturally Poincare dual to uniformly finite homology
([2]). This fact is easy to prove in the limited case we use:

Lemma 2.2. Let Mm be a complete, connected, Riemannian man-
ifold of bounded geometry. There is a canonical isomorphism between
Huf

0 (M) and Hm∞(M).

Proof. Let ε > 0 be much smaller than the convexity radius of M .
Let S be a maximal subset of M such that any two points of S are at
distance at least ε. The balls of radius ε centered at points of S cover
M , and the concentric balls of radii ε

2 are disjoint. As S with its induced
metric is quasi-isometric to M , Huf

0 (S) = Huf
0 (M).

Choose a partition of unity {fs}s∈S so that fs is supported in Bs(ε).
Given the bounds on the geometry of M these can be chosen with
uniformly bounded derivatives. Let φs be the bump form fsdvol∫

fs
.

Given c ∈ Cuf
0 (S), let wc = Σscsφs. If c = ∂b for b ∈ Cuf

1 (S) then
b is a uniformly locally finite sum of pairs (s, s′) with d(s, s′) uniformly
bounded. The difference φs −φs′ is therefore d of a bounded n− 1 form
of uniformly bounded support. Thus [wc] = 0 in l∞ cohomology, so
c �→ wc induces a well defined map Huf

0 (S) → Hn∞(M).
Similarly, given w an l∞ n-form on M , define cw = Σs(

∫
fsw)s. If

w = dη for an l∞ form η, then by Theorem 1.3 and Stokes’ Theorem,
cw = 0 in Huf

0 (S). Thus we have a map Hn∞(M) → Huf
0 (S). We now

show these maps are inverses.
Given a uniformly finite chain c = Σcss let c′ be the image of c
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under the composition of these maps. We have c′ = ΣscsΣt(
∫
ftφs)t.

Let ds = Σt(
∫
ftφs)t, then c− c′ = Σscs(s− ds). The chain s− ds is of

uniformly bounded support and sum to zero, hence it is a boundary of
a uniformly bounded 1-chain, bs with support in a uniformly bounded
neighborhood of s. Thus the difference c − c′ = ∂b = ∂Σscsbs with
b ∈ Cuf

1 .
Likewise, given an l∞ form w, let w′ be the image under the com-

position of the two maps. We have w = Σsfsw, and w′ = Σs(
∫
fsw)φs.

Thus w − w′ = Σsηs, where the forms ηs = fsw − (
∫
fsw)φs are of

uniformly bounded support, uniformly bounded pointwise norm, and
have integral zero. This implies, by the bounded geometry of M , that
ηs = dσs for σs also of uniformly bounded norm and support. Thus
w − w′ = d(Σsσs), and therefore w = w′ in Hn∞(M).

Thus the maps are inverses and give the desired isomorphism. q.e.d.

For the infinite connected sums we have been discussing, one has
Âuf(M#SN) = Âuf(M)+Â(N)[S], where Â(N) is the (integer) Â-genus
of N . Thus the hypotheses of the results of Block and Weinberger are
precisely the vanishing of the Âuf genus. Our main theroem shows that
the Âuf genus is an obstruction to positive scalar curvature.

Theorem 2.3. IfM has nonnegative scalar curvature then Âuf = 0.

The proof of this theorem is, in outline, much like the corresponding
theorem in the compact case: relate the Â class to the index of a Dirac
operator via the index theorem and then prove the vanishing of this
index by a Bochner type argument. Both steps are substantially more
difficult here, and some essentially new ingredients are needed.

We first need to reinterpret Theorem 1.3 cohomologically. Cheeger
and Gromov ([7]) prove a chopping theorem for manifolds of bounded
geometry which says that for any n there are constants C0, C1, . . . , Cn

and r so that for any S ⊂ M there is a codimension 0 manifold with
boundary (X, ∂X) such that:

(1) S ⊂ X ⊂ Nr(S).

(2) For i = 0, 1, . . . , n ∇iII∂X ≤ Ci where II∂X is the second funda-
mental form, and ∇i is the ith covariant derivative.

(3) Vol (∂X)
Vol (∂r(S))

is bounded above and below independent of S.

Lemma 2.4. For any n there are constants C0, C1, . . . , Cn and r
so that if ω ∈ Ωm(M) is bounded then ω is d of a bounded form if and
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only if for some C ∣∣∣∣
∫

X
ω

∣∣∣∣ ≤ Cvol (∂X)

for all (X, ∂X) compact, codimension 0 submanifold with ∇iII∂X ≤
Ci for i = 0, 1, . . . , n.

Proof. The condition is necessary by Stokes theorem. To see that it
is sufficient we use Theorem 1.3. That lemma, formulated cohomologi-
cally, says that we need to show:

∣∣∣∣
∫

S
ω

∣∣∣∣ ≤ Cvol (∂rS)

with an arbitrary S ⊂ M in place of X.
For any such S, approximate it by a manifold with boundary, X,

via the chopping theorem above.
By (1) | ∫S ω| and | ∫X ω| differ by at most ||ω||Vol (∂rS) which, by

part (3) of the chopping theorem, is bounded above by Kvol (∂X) for
some K which depends on ω and M , but not on S.

Thus the bound on | ∫S ω| for arbitrary S follows, with perhaps a
larger C, from the bound for submanifolds with bounded second funda-
mental forms. q.e.d.

In view of Lemma 2.4, Theorem 2.3 will follow from:

Theorem 2.5. Let (X, ∂X) be a compact spin manifold of nonneg-
ative scalar curvature. There is a C depending only on the curvature
and second fundamental form so that

∣∣∣∣
∫

X
Â

∣∣∣∣ ≤ Cvol (∂X).

We prove Theorem 2.5 by a detailed analysis of the Dirac operator
on a manifold with boundary.

3. Index Theory

Let D be the canonical Dirac operator on spinors (much of this
section works for an arbitrary geometric operators, but we will not need
this generality).

Theorem 3.1 ([1]). For any geometric operator D, there is a
characteristic form ω, a polynomial P , and n ∈ N, so that for any
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(X, ∂X) compact we have:

index (D) =
∫

X
w +

∫
∂X

P (II∂X ,∇II∂X , . . . ,∇nII∂X) + η(∂X)

where η(N) = lims→0+ Σλ∈Spec(D∂)λ
−s.

We will use this to prove vanishing of ω in l∞-cohomology via
Lemma 2.4.

Given the bounds on ∇iII∂X , the middle term in Theorem 3.1 is
bounded by a constant multiple of Vol (∂X).

Likewise, η is bounded linearly in Vol (∂X). This is shown for the
signature operator in [8] and for a wide range of geometric operators
including the Dirac operator on spinors in [15].

In view of this, and Lemma 2.4, we can interpret 3.1 as saying that
the characteristic form in Huf

0 is a “uniformly finite index” of our oper-
ator.

For the Dirac operator on spinors, the form ω is the Â form. The
Dirac operator is related to positive scalar curvature by:

Theorem 3.2 (Lichnerowicz formula, [14]).

D2 = ∇∗∇ +
κ

4

where ∇ is the canonical spinor connection, and κ the scalar curvature.

So, if s is a harmonic spinor (meaning Ds = 0) on X, we have:

0 = 〈∇∗∇s, s〉 +
κ

4
||s||2.

If X were closed, we could integrate over X, and the first term on
the RHS would be ||∇s||2.

Then, if κ > 0 both terms on the RHS would be ≥ 0, and therefore
0. This would mean s = 0. i.e., that there are no harmonic spinors, so
that the index would be zero. Then by the Atiyah-Singer index theorem
the Â genus would be 0.

It is this argument we try to extend to our setting.
When one integrates the Lichnerowicz formula over an X with bound-

ary there is an extra term which comes from the boundary term of
integration by parts (see [14]).

∫
X
〈∇∗∇s, s〉 = ||∇s||2 −

∫
∂X

〈∇νs, s〉
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(ν is the unit normal vector to ∂X):
The second term on the RHS is introduced when we integrate by

parts.
So, when we have boundary, the Lichnerowicz formula becomes:

Lemma 3.3. If s is a harmonic spinor on X, we have:

0 = ||∇s||2 +
∫

X

κ

4
||s||2 −

∫
∂X

〈∇νs, s〉

If we assume the scalar curvature is ≥ 0 then the first two terms are
nonnegative. This can only happen if:∫

∂X
〈∇νs, s〉 ≥ 0.

We can expand D in normal coordinates around the boundary:

Lemma 3.4 ([9]). Along ∂X we have:

D = G

(
D∂X −∇ν − 1

2
tr (II)

)

where G is the bundle automorphism induced by clifford multiplication
by the normal vector, and D∂X is the Dirac operator intrinsic to ∂X .

Ds = 0 gives

〈∇νs, s〉 = 〈D∂Xs, s〉 − 1
2

tr (II)||s||2.
Thus we have proven:

Proposition 3.5. If X has nonnegative scalar curvature, and s is
a harmonic spinor, then:∫

∂X
〈D∂Xs, s〉 ≥

∫
∂X

1
2

tr (II)||s||2.

The boundary conditions for harmonic spinors in the Atiyah-Patodi-
Singer index theorem are that when s|∂X is expanded in eigenfunctions
of D∂X , only negative eigenvalues are used.

Writing s as Σλaλsλ, where the sλ are the eigenvectors of D∂X , 3.5
becomes:

Σλλ||aλ||2 ≥ 1
2

∫
∂X

tr (II)||s||2.
Since all the λ must be negative, we must have some λ ≥ λ0 =

inf(12tr(II)). By projecting onto these eigenspaces between λ0 and 0, we
get:
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Theorem 3.6. If (X, ∂X) is spin and has nonnegative scalar cur-
vature then there is Λ, depending only on the second fundamental form,
such that dim(H) ≤ ND2

∂X
(Λ), where H is the space of harmonic spinors

on X with A.-P.-S. boundary values, and ND2
∂X

(Λ) is the dimension of
the space of eigenfunctions of D2

∂X below Λ.

Theorem 3.7. If Nn is a compact spin manifold, then for each λ
there is a Cλ depending only on the curvature and injectivity radius of
N , for which ND2(λ) ≤ Cλvol (N).

Proof. By ([4], Prop 4.20(ii)) there are A and B so that λn(D2) ≥
λAn−B(∆), where ∆ is the laplacian on functions. Thus the bound we
need follows immediately from the same statement (with different Cλ)
for the laplacian on functions.

Theorem 3.8 ([11], Appendix C+). There is a constant K depend-
ing only on curvature bounds and dimension for which for any compact
manifold N we have the bound:

λV (ε) ≥ Kε−2

for any ε ≤ inj rad. Here V (ε) is the minimal number of ε balls which
cover N .

Since we have bounds on the curvature, there is an L such that:

Vol (B(ε)) ≥ Lεn

for B(ε) any such ε ball in N .
Choose a maximal family of disjoint ε

2 ball in N . By maximality the
concentric balls of radius ε cover. But by disjointness there are at most

2nVol (N)ε−n

L

balls. Therefore we have:

Proposition 3.9. There is a constant C depending only on the
curvature such that, for any ε ≤ inj rad(N)

λCvol (N)ε−n ≥ ε−2.

Turning this around to an upper bound on the spectral counting
function gives:
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Proposition 3.10. There is a constant C depending only on the
curvature, and a λ0 depending only on curvature and injectivity radius,
such that for any λ ≥ λ0

N(λ) ≤ CVol (N)λ
n
2 .

This gives the Cλ we needed for 3.7 Cλ = Cλ
n
2 works for λ ≥ λ0

and Cλ = Cλ
n
2
0 works for λ ≤ λ0, as N(λ) ≤ N(λ0). q.e.d.

This completes the proof of Theorem 2.5, and thereby Theorem 2.3.

4. Applications

Our first corollary, combined with the work of [6], gives a complete
characterization of infinite connected sums of positive scalar curvature.

Corollary 4.1. Let M , N , and S be as before. If Â(N) �= 0 then
M#SN admits a metric of uniformly positive scalar curvature if and
only if [S] = 0 in Huf

0 (M).

In fact, 2.3 shows that if [S] �= 0 then M#SN does not even admit
a metric of nonnegative scalar curvature. Thus there is an interesting
alternative: an infinite connected sum where M has uniformly positive
scalar curvature either has a metric of uniformly positive scalar curva-
ture or does not even have a metric of nonnegative scalar curvature.
It would be interesting to understand what happens when M only has
nonnegative scalar curvature. Theorem 2.3 still gives [S] as an obstruc-
tion, but is very likely no longer sharp. As noted in the sketch of the
proof of Theorem 1.2, the construction there does not give metrics of
bounded geometry unless one has a positive lower bound on κ. It seems
likely that in the place of l∞-cohomology one needs forms which go to
zero at ∞ in some way related to κ. A closer examination of the behav-
ior of C in Theorem 2.5 in terms of the lower bound on κ might give
the right decay condition.

One intriguing aspect of Theorem 2.3 is that the obstruction lives
in a non-Hausdorff group. This prevents the problem from fitting in
to the C∗ algebra framework usually used for these types of problems.
To get around this, one can work with reduced uniformly finite homol-
ogy, where the groups are the quotients of cycles by the closure of the
boundaries. The reduced invariant is shown to obstruct positive scalar
curvature in [16] and [6]. Corollary 4.1 shows that this loses impor-
tant information. The necessity of working with non-Hausdorff groups
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makes it unclear how to get versions of the theorems for families, and in
particular, it is unclear when (M#SN)×R

i carries a metric of positive
scalar curvature.

Theorem 2.5 has applications to compact manifolds as well. Recall
the theorem of [13] which says that for any compact manifold there is a
metric whose non-positive scalar curvature is contained in an arbitrary
ball. This is a purely topological statement. As a corollary of 2.5, one
can see that this ball cannot be arbitrarily small.

Theorem 4.2. Let M be a compact spin manifold with Â �= 0. For
any bounds on the curvature, there is an r > 0 so that there is no metric
on M with those bounds on curvature and whose non-positive curvature
set is contained in a ball of radius r.

Proof. For r small enough the ball is embedded. Further, one has
bounds on the second fundamental form of the sphere in terms of r and
the curvature of M . Applying Theorem 2.5 to the complement of the
ball gives a bound, which goes to 0 with r, on the integral of the Â
class over the complement of the ball. As the curvature is bounded, the
integral over the ball is bounded by a multiple of its volume. These
must add to a nonzero integer, which is a contradiction for r sufficiently
small. q.e.d.

Also, many of the standard applications (see, for example, [14]) of
the Bochner method can be carried over to manifolds with boundary as
well: flat manifolds have their signature bounded by a multiple of the
volume of the boundary, likewise for the total Betti number of manifolds
with positive definite curvature tensor. For submanifolds of Euclidean
space or the sphere, these results follow easily just from Alexander du-
ality.
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